- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0003000000000000
- More
- Availability
-
21
- Author / Contributor
- Filter by Author / Creator
-
-
Finn, C (2)
-
Hejna, J (2)
-
Knox, W (2)
-
Niekum, S (2)
-
Rafailov, R (2)
-
Sikchi, H (2)
-
Abbeel, P. (1)
-
Chittepu, Y (1)
-
Finn, C. (1)
-
Jabri, A. (1)
-
Levine, S. (1)
-
Park, R (1)
-
Sadigh, D (1)
-
Srinivas, A. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available December 1, 2025
-
Hejna, J; Rafailov, R; Sikchi, H; Finn, C; Niekum, S; Knox, W; Sadigh, D (, International Conference on Learning Representations)
-
Srinivas, A.; Jabri, A.; Abbeel, P.; Levine, S.; Finn, C. (, International Conference on Machine Learning (ICML))A key challenge in complex visuomotor control is learning abstract representations that are ef- fective for specifying goals, planning, and gen- eralization. To this end, we introduce universal planning networks (UPN). UPNs embed differen- tiable planning within a goal-directed policy. This planning computation unrolls a forward model in a latent space and infers an optimal action plan through gradient descent trajectory optimization. The plan-by-gradient-descent process and its un- derlying representations are learned end-to-end to directly optimize a supervised imitation learning objective. We find that the representations learned are not only effective for goal-directed visual imi- tation via gradient-based trajectory optimization, but can also provide a metric for specifying goals using images. The learned representations can be leveraged to specify distance-based rewards to reach new target states for model-free reinforce- ment learning, resulting in substantially more ef- fective learning when solving new tasks described via image-based goals. We were able to achieve successful transfer of visuomotor planning strate- gies across robots with significantly different mor- phologies and actuation capabilities.more » « less
An official website of the United States government

Full Text Available